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Abstract
Many chronic diseases are marked by fibrosis, which is defined by an abundance of activated fibroblasts and excessive
deposition of extracellular matrix, resulting in loss of normal function of the affected organs. The initiation and
progression of fibrosis are elaborated by pro-fibrotic cytokines, the most critical of which is transforming growth
factor-β1 (TGF-β1). This review focuses on the fibrogenic roles of increased TGF-β activities and underlying signaling
mechanisms in the activated fibroblast population and other cell types that contribute to progression of fibrosis.
Insight into these roles and mechanisms of TGF-β as a universal driver of fibrosis has stimulated the development
of therapeutic interventions to attenuate fibrosis progression, based on interference with TGF-β signaling. Their
promise in preclinical and clinical settings will be discussed.
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Fibrosis in various organs and diseases

Fibrosis is defined by the progressive replacement of
healthy parenchymal tissue with collagen-rich extracel-
lular matrix (ECM) that is deposited by an excessive
population of activated fibroblasts, resulting in loss of
proper tissue function. Commonly originating as a repar-
ative response to preserve tissue integrity following
injury, fibrosis can develop in virtually any tissue that
is exposed to repeated injury or persistent damage, as
the consequence of an aberrant and imbalanced wound
healing response. Chronic diseases associated with a
fibrotic response include, but are not limited to, diabetes,
hypertension, cardiomyopathy, interstitial lung disease,
viral and nonviral hepatitis, non-alcoholic steatohepatitis
(NASH), and autoimmune-related disorders such as
scleroderma and inflammatory bowel disease [1–7].
With a high incidence of these and other chronic diseases
linked to fibrosis-related organ failure, up to 45% of all
deaths in the developed world can be attributed to fibro-
sis [8].

The severe clinical impact of fibrosis is well illustrated
by its progressive roles in a wide array of diseases affect-
ing vital organs. Renal fibrosis is a hallmark of end-stage
chronic kidney disease, which affects an estimated
20 million adults in the United States and about 10%

of the world population [3,9]. Chronic ECM deposition
and fibroblast activity result in disruption of kidney
architecture that functionally impacts the vasculature,
glomeruli, and tubule-interstitium, thus reducing blood
supply and organ function [3]. Myocardial fibrosis
results in progressive stiffening of cardiac tissue follow-
ing chronic heart failure, with the pattern and extent of
fibrosis shown to decrease left ventricular ejection and
lead to mortality [10]. Fibrosis also plays a significant
role in the progression of other cardiovascular diseases,
including aortic valve disease and atherosclerosis, each
of which may increase the risk of myocardial infarct or
stroke [11]. In the liver, the progressive fat deposition
in hepatocytes in NASH is accompanied by excessive
ECM deposition that reflects a response to functional
liver damage [12]. Additionally, cirrhosis, the culmina-
tion of fibrotic remodeling of the liver and a major risk
factor for hepatocellular carcinoma, is the 11th leading
cause of death in the United States and accounts for more
than one million deaths world-wide each year [13,14].
Fibrotic remodeling also associates with various respira-
tory diseases including asthma, chronic obstructive pul-
monary disease, acute respiratory distress syndrome, and
interstitial lung diseases, such as idiopathic pulmonary
fibrosis (IPF) [15–19]. IPF, which involves fibrotic
remodeling of the lung parenchyma, is characterized by
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severe dyspnea and cough, and is particularly devastat-
ing, with a median survival time of 3.8 years for patients
of 65 years or older in the United States [15]. These and
other fibrosis-related diseases illustrate the severe clini-
cal impact of fibrosis on human health.

Different types of fibrosis share common
characteristics

Common characteristics in disease initiation and progres-
sion define fibrosis as a dysfunctional wound response in
various organs. Fibrosis is initiated by cellular injury that
is presumably sensed through impaired cell–cell or cell–
ECM interactions (Figure 1). This damage at the cellular
level promotes localized fibrin clot formation and release
by damaged cells of pro-inflammatory factors that

activate the innate immune response. Collectively called
‘damage-associated molecular patterns’ (DAMPs), these
molecules, either of intracellular origin or released from
the ECM, promote an inflammatory response that results
in recruitment of neutrophils and macrophages to clear
necrotic cells and cell debris [20–22]. During this acute
inflammatory response, cells release cytokines, chemo-
kines, and growth factors, including transforming growth
factor-β1 (TGF-β1), that stimulate recruitment and prolif-
eration of fibroblasts, and activate fibroblasts to enhance
their protein synthesis and metabolic activity [22,23].
Activated fibroblasts and myofibroblasts that provide cell
and tissue contractility show a markedly enhanced depo-
sition of ECM proteins and stabilize the fibrotic tissue
architecture [24,25]. In normal wound healing, their acti-
vation is transient, and these cells then undergo apoptosis
or quiescence as the provisional ECM degrades and is
replaced by parenchymal tissue architecture [26,27].

Figure 1. Fibrosis, a dysfunctional wound healing response. (I, II) Injured epithelial cells secrete signaling molecules, including TGF-β1, which
promote fibroblast migration and proliferation, and differentiation into myofibroblasts. (II, III) TGF-β also recruits inflammatory cells to the
site of injury. In normal wound healing, fibroblast-mediated contraction decreases the size of the wound while other cells, such as myofibro-
blasts, macrophages, and other inflammatory cells, undergo apoptosis, terminating collagen deposition and enabling the restoration of nor-
mal tissue architecture. (III) Repeated injury or persistent damage to the same site, as well as aberrant tissue-clearing responses, may result in
loss of homeostasis of tissue integrity and stiffening of the tissue caused by increased collagen deposition. (IV) Higher tension or increased
matrix stiffness can further activate fibroblasts, creating a positive feedback loop that promotes fibrosis.
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However, in fibrosis, chronic injury prevents such reso-
lution of the wound healing cascade, leaving a mixed
cell population with pro-inflammatory and pro-fibrotic
properties, largely consisting of perpetually activated
fibroblasts and myofibroblasts that excessively deposit
ECM proteins, including collagens [28,29]. The fibrotic
microenvironment further amplifies the fibrotic response
by inducing additional cell damage and oxidative stress
due to hypoxia and mechanotransductive signaling in
response to dysregulated and enhanced tissue stiffness
[20,30] (Figure 1). The architectural and functional con-
sequences of the fibrotic disease are variable and hetero-
geneous, depending largely on the tissue and organ
affected.

The susceptibility of different tissues to inflammatory
and fibrotic disease can also be affected by genetic fac-
tors, as seen in GWAS studies of links between primary
sclerosing cholangitis and inflammatory bowel disease
[31,32]. GWAS analyses of IPF additionally associate
altered expression of MUC5B, TERT, DSP, ATP11A,
IVD, AKAP13, KANSL1, FAM13A, DPP9, KIF15,
MAD1L1, and DEPTOR with increased IPF susceptibil-
ity [33,34]. Environmental factors that induce or contrib-
ute to the fibrotic response also help to define the extent
and progression of fibrotic disease. For example, occu-
pational exposure to smoke and respirable dust or asbes-
tos enhances the susceptibility to IPF [35]. Additionally,
the diverse origins of liver fibrosis, including viral infec-
tion, genetic disorders, toxic injury, and metabolic dys-
function, help to define the disease [4]. For fibrotic
disease known to result from environmental factors,
removing the source of chronic injury that drives disease
progression is often the most direct course of treatment.
For example, antiviral drugs against hepatitis C have
been shown to ameliorate liver fibrosis even in patients
with advanced disease [36]. In most fibrotic indications,
however, the source of injury is not well understood or is
difficult to target directly.

The accumulation of fibrotic scar tissue resulting from
activated fibroblasts and myofibroblasts depends on a
dynamic balance between ECM protein deposition and
degradation that defines ECM turnover. ECM synthesis
and degradation, and activities of ECM stabilizing cross-
linking enzymes, increasewith accumulation offibroblasts
and myofibroblasts, and progression of fibrotic disease
[37–39]. The increase in resident fibroblasts results not
only from enhanced proliferation but also from fibroblast
recruitment to the site of fibrotic injury. Furthermore, epi-
thelial and endothelial cells can acquire mesenchymal
characteristics and thus contribute to the fibrotic cell pop-
ulation through epithelial– or endothelial–mesenchymal
transdifferentiation (EMTor EndMT) [40–42]. Regardless
of their origin, the activation and functions of these fibro-
blasts and myofibroblasts are largely driven by increased
expression and activities of pro-fibrotic cytokines and
growth factors, among which TGF-β1 is most critical.
Therapies that effectively target factors driving cell differ-
entiation, ECM synthesis or ECM stabilization have the
potential to repress fibrotic disease progression and even
reverse it.

While resident fibroblasts are the major cell popula-
tion that deposits collagen and ECM proteins in cardiac
and liver fibrosis [43–45], other cell populations contrib-
ute to fibroblast activation and myofibroblast differenti-
ation in lung and kidney fibrosis [46]. Inflammatory
monocytes and resident tissue macrophages contribute
to the state of fibrosis, consistent with their critical roles
in normal wound healing from initiation to the resolution
of the injury. In response to injury, these cells alter func-
tionally and elaborate changes in the tissue micro-
environment through secretion of growth factors and
cytokines, such as TGF-β1, that promote fibrosis by
recruiting more fibroblasts, enhancing their differentia-
tion into myofibroblasts, or promoting ECM protein
secretion [22].

Increased TGF-β signaling marks fibrosis

To understand the roles of TGF-β in fibrosis, one must
appreciate some basics of TGF-β biology. The mamma-
lian genome encodes three TGF-βs – TGF-β1, -β2, and
-β3 – which act as disulfide-linked dimers. Each gene
encodes a precursor proteinwith an amino-terminal signal
peptide required for secretion, a long pro-segment, and a
carboxy-terminal 112 amino acid, mature TGF-β poly-
peptide. During secretion, the pro-segments are cleaved
from the mature polypeptides, yet remain associated with
mature TGF-β as chaperones. Consequently, the mature
TGF-β dimer is secreted as a ‘latent’ complex with two
copies of the non-covalently associated pro-segment,
often called ‘latency-associated polypeptide’ (LAP), that
prevent TGF-β from binding to its cell surface receptors
[47,48] (Figure 2). Hence, activation of latent TGF-β
complexes is critically required for TGF-β to activate sig-
naling in TGF-β-responsive cells [48,49]. Since TGF-β1,
purified from platelets, primarily exists as a homodimer
[50], cells are thought to express TGF-β1, TGF-β2, and
TGF-β3 as homodimers, a notion reinforced by the com-
mercial availability of TGF-β homodimers. Nevertheless,
natural TGF-β1:β2 heterodimers have been isolated [51]
and this raises the possibility of naturally expressed
TGF-β heterodimers, e.g. TGF-β1:β3.
Fibrosis is consistently marked by increased TGF-β1

expression, although increased TGF-β2 and TGF-β3
mRNA expression has also been noted [52–54]. Acti-
vated fibroblasts and myofibroblasts represent a major
cell population to express and respond to TGF-β1
[53,54], consistent with the notion of a self-perpetuating
response to chronic injury and inflammation. Macro-
phages and epithelial cells also represent an important
source of TGF-β1 expression. Impaired macrophage
recruitment decreases the TGF-β1 levels in the fibrotic
lesion in some models of fibrosis [54,55], while epithe-
lial cells regulate TGF-β1 activity in others [56,57].
The contributions of TGF-β1 expression by other cell
types in the fibrotic lesion are less defined, although
platelets, epithelial cells, T-cells, and mast cells also
express TGF-β1 [54]. Whether TGF-β2 and -β3 are
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commonly and concomitantly expressed in different
fibrosis types is unclear. Furthermore, the relative contri-
butions of the different cell populations to increased
TGF-β1 expression in fibrosis may differ between differ-
ent types of fibrosis and disease states.
TGF-β1 expression is transcriptionally activated by

AP1 transcription complexes, i.e. heterodimers of Jun
and Fos proteins, as well as the transcription factors
NF-AT or C/EBPβ, which bind TGFB1 regulatory pro-
moter sequences [58,59]. TGF-β1 expression is induced
by growth factors and pro-inflammatory cytokines that
activate MAPK pathways, and various other stimuli
[47]. Additionally, TGF-β1 directs TGFB1 expression
[60], enabling auto-amplification beyond the initial para-
crine TGF-β1 signaling.
The secreted latent TGF-β1 complexes often have one

of the pro-segments linked covalently to a fibrillin-like
latent TGF-β binding protein 1 (LTBP1) that enables

their deposition to be localized within the ECM in prox-
imity to TGF-β1-expressing cells (Figure 2B). Accord-
ingly, ECM in fibrotic lesions is a major depot of latent
TGF-β1, readily available for activation [47,49]. Alter-
natively, the pro-segments of latent TGF-β1 complexes
also associate with a subset of LRRC transmembrane
proteins, allowing cell-associated retention of latent
TGF-β1 (Figure 2B). Latent TGF-β1 associates with
LRRC32, also known as GARP, at the surface of Treg
cells, activated B-cells, and platelets, enabling GARP
to control retention of latent TGF-β complexes [61,62].
GARP is also expressed by endothelial cells and fibro-
blasts [63]. The GARP-related LRRC33 also associates
with latent TGF-β1 and similarly controls TGF-β1
latency and activation in other cell types, including mye-
loid cells [64,65], while the related LRRC15, expressed
by stromal fibroblasts of carcinomas [66], may similarly
control cell-associated TGF-β1 retention. The expression

Figure 2. Latent TGF-β processing and initiation of TGF-β signaling. (A) TGF-β proteins are synthesized as precursor molecules consisting of a
signal peptide, a pro-segment (termed latency-associated polypeptide or LAP), and the mature TGF-βmonomer sequence. After signal peptide
removal and proteolytic processing, the mature, disulfide-linked TGF-β dimer remains associated with two pro-segments. (B) Once released
from cells, the TGF-β dimer that is kept latent by its associated pro-segments associates either with LTBP1, which targets latent TGF-β into
the ECM, or with an LRRC molecule such as GARP at the surface of various cell types. (C) Select β integrins, in association with αv integrins,
can bind the RGD sequence of the pro-segment in the latent TGF-β1 complex. The stoichiometry of this interaction is unclear. Physiological
activation of latent TGF-β1 complexes, resulting in the release of biologically active TGF-β1, involves increased tension at the interface with
the integrin and protease activities that confer degradation of the pro-segments. (D) Active TGF-β binds to heterotetrameric complexes of
two types of TGF-β receptors, TβRI and TβRII receptors, at the cell surface. The ligand binding induces TβRII to phosphorylate and activate
TβRI, leading to activation of TGF-β-induced Smad and non-Smad signaling pathways.
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of these LRRC proteins in fibrosis has not been
characterized.

The activation of latent TGF-β1 complexes has been
studied extensively, while few studies have addressed
the activation of TGF-β2 or -β3 homodimers or TGF-β
heterodimers. Structural interactions of the TGF-β1
pro-segment that involve its Arg-Gly-Asp (RGD)
sequence with selected integrins enable activation of
latent TGF-β1 complexes [48,49,67] (Figure 2C). Integ-
rins αvβ6 and αvβ1 mediate TGF-β1 activation at the
surface of epithelial cells and fibroblasts in the fibrotic
lesion, respectively [68,69], whereas αvβ8 is required
for activation of GARP-bound TGF-β1 on Treg and
endothelial cells [69,70]. Which integrin is involved in
TGF-β1 latency and activation depends on cell type
and context, and often involves heterotypic cell interac-
tions. Thus, targeted interference of the integrin–pro-
segment interface represents an approach to selectively

inhibit TGF-β1 activation in defined cell populations.
Contributions of proteases, often metalloproteases, in
degrading the pro-segments, leading to release of active
TGF-β1, have also been extensively documented
[48,49,67]. Physiological TGF-β1 activation scenarios
are likely to combine molecular deformation of the
integrin–pro-segment interface with metalloprotease
activities [49] (Figure 2C,D). The diversity of local
TGF-β1 activation mechanisms may help to explain dif-
ferences in susceptibility to TGF-β inhibition, depending
on the cell composition and architectural organization of
the lesion.
Active TGF-β binds tetrameric combinations of two

different transmembrane kinases, type I and type II
receptors, that are able to phosphorylate serine, threo-
nine, and tyrosine (Figures 2D and 3). TGF-β binding
to these complexes activates Smad2 and Smad3 through
C-terminal serine phosphorylation by the type I receptor

Figure 3. Contribution of Smad and non-Smad signaling pathways to fibrosis at the cellular level. TGF-β-induced activation of TβRI by TβRII
leads to the recruitment and C-terminal phosphorylation of Smad2 and Smad3, which then associate with a Smad4. These activated hetero-
trimeric Smad complexes translocate into the nucleus, where they associate with high-affinity DNA binding transcription factors and tran-
scription cofactors to activate or repress gene transcription. For example, Smad3/Smad4 complexes can cooperate with AP1 transcription
complexes (Jun–Fos dimers) to promote pro-fibrotic gene transcription. TGF-β also activates non-Smad signaling, notably the MAPK path-
ways and Akt–mTOR signaling that also contribute to fibrogenic gene and cell differentiation responses. COL1A2, CCN2 (CTGF), SERPINE1
(PAI-1), FN1, and IL11 encode collagen Iα2, connective tissue growth factor (CTGF), plasminogen activator inhibitor-1 (PAI-1), fibronectin,
and interleukin-11, respectively. mTORC1 activation promotes protein translation and contributes to increased collagen synthesis. TF, tran-
scription factor.
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kinases [48,71]. These effector Smads, in combination
with Smad4, then translocate into the nucleus, where
they combine with DNA sequence-specific transcription
factors and coregulators at regulatory gene sequences,
and thus activate or repress target gene transcription in
response to TGF-β [48,72,73] (Figure 3). Detection of
C-terminally phosphorylated Smad2 and/or Smad3 is
indicative of TGF-β/Smad signaling, yet may also result
from activation in response to other TGF-β family mem-
bers, such as activins [48,71]. Smad2 and Smad3
activation is elevated in activated fibroblasts and myofi-
broblasts in the fibrotic lesion [53,54], suggesting that
these cells are primary targets of increased TGF-β1 sig-
naling. While Smad signaling uniquely defines ‘canoni-
cal’ signaling for the TGF-β family proteins, TGF-β also
activates non-Smad signaling pathways, including the
PI3K–Akt–mTOR pathway, Erk MAPK and p38
MAPK signaling, and Src and Rho GTPases [48,74]
(Figure 3). These pathways, however, are not diagnostic
of TGF-β signaling, since they are strongly activated by
receptor tyrosine kinases [75].

Increased TGF-β signaling promotes fibrosis

The increase in TGF-β signaling in fibrosis correlates eti-
ologically with the initiation and progression of fibrosis.
This notion is supported by the induction of fibrosis in
response to topically administered or expressed TGF-β
[76–78], and the decreased fibrosis in mice with inacti-
vated TGF-β receptor or Smad3 expression [79–82].
The key role of TGF-β in driving fibrosis needs to be
seen in the context of increased signaling by other cyto-
kines and growth factors, many of which activateMAPK
pathways and/or promote activation of transcription fac-
tors. This context is highly relevant since Smads control
transcription through functional association and cooper-
ation with high-affinity DNA-binding transcription fac-
tors, such as AP1 complexes that are activated by Erk
and JNK MAPK pathways, or TCF/LEF and β-catenin
that are activated by Wnt signaling [48,73,83]. More-
over, the stabilities and activities of effector Smads are
controlled by (de)phosphorylation and (de)ubiquityla-
tion in response to signaling [84]. Consequently, Smad
signaling cooperates with, depends on, and is defined
by functional interactions with other signaling pathways
and transcription factors [48,73,85].
In fibrosis, increased TGF-β signaling prominently

affects the behavior of the fibroblast population, which
represents the majority of cells in fibrotic lesions. TGF-
β is chemoattractive for fibroblasts at very low concen-
trations [86], resulting in their recruitment to sites of
TGF-β1 activation. Furthermore, low TGF-β levels pro-
mote fibroblast proliferation [87–89]. These activities
may explain the high number of fibroblasts in fibrotic
lesions. Additionally, TGF-β-induced mesenchymal
characteristics enable epithelial and endothelial cells to
contribute to the fibroblast population in fibrotic

diseases, as revealed in mouse models of fibrosis
[41,42,90].

Activation of fibroblasts in response to TGF-β results
in increased cell and nuclear sizes, enhanced protein syn-
thesis capacity and ECM protein expression, and addi-
tional metabolic and gene expression changes. Among
the upregulated ECM proteins expressed by fibroblasts,
increased collagen production stands out as a hallmark of
fibrosis [43]. The genes encoding collagen Iα1 and fibro-
nectin are direct, transcriptional targets of TGF-β/Smad3
signaling [91,92]. Increased ECM protein expression in
response to TGF-β is accompanied by attenuation of
ECM protein degradation, e.g. through enhanced expres-
sion of protease inhibitors, thus facilitating ECM protein
accumulation [53,93]. mTOR signaling, in response to
TGF-β or growth factors, plays a key role in enhancing
protein synthesis by activated fibroblasts and promotes
both generally increased protein synthesis and selective
proteomic alterations [94–96]. Selective metabolic
responses activated by TGF-β are apparent with the
increased expression of the glucose transporter GLUT1,
thus enabling increased glucose import and glycolysis
[97,98]. TGF-β also activates the expression of hexokinase
2, which catalyzes the first obligatory step of glucose
metabolism, facilitates glucose entry, and is upregulated
in IPF [99]. Additionally, TGF-β promotes the expression
of glycolytic enzymes and regulators of enzyme metabo-
lism, resulting in hyperglycolysis [98], and of the tran-
scription factor ATF4, the master regulator of amino acid
synthesis [100]. This enables increased protein synthesis,
in particular of the serine–glycine biosynthetic pathway,
to meet the demands of increased collagen and ECM pro-
tein synthesis [100]. This metabolic reprogramming
requires cooperation of Smad and mTOR signaling and
is essential for the pro-fibrotic effects of TGF-β and pro-
gression of fibrosis in vivo [100] (Figure 3).

An array of TGF-β-induced gene expression changes,
besides those leading to increased ECM protein expres-
sion, contributes additionally to the establishment and
progression of fibrotic lesions (Figure 3). Notably, TGF-
β promotes differentiation of activated fibroblasts into
contractile myofibroblasts [101]. Functional crosstalk
with signaling induced by growth factor-activated tyro-
sine kinase receptors and integrins enables TGF-β signal-
ing through Smad3 to induce a contractile protein
expression program, including the expression of
α-smoothmuscle actin, that marksmyofibroblast differen-
tiation [101–103]. TGF-β/Smad3 signaling also directs
the expression of connective tissue growth factor
(CTGF/CCN2) in fibroblasts. CTGF contributes substan-
tially to ECMprotein expression andmyofibroblast differ-
entiation, and its expression greatly contributes to fibrosis
in some mouse models [104,105]. Additionally, TGF-β
directly induces the expression by fibroblasts and myofi-
broblasts of interleukin-11, a pro-fibrotic cytokine that is
seen as an important regulator of fibrosis [106,107].
Interleukin-11 secretion by fibroblasts and epithelial cells
contributes to fibroblast activation and myofibroblast dif-
ferentiation, and consequently to ECM deposition. Its
expression plays an essential role in some animal models
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of fibrosis, such as the bleomycin-induced model of pul-
monary fibrosis [108,109]. TGF-β/Smad signaling also
directs the expression of the closely related c-Jun, JunB,
and JunD transcription factors that heterodimerize with
c-Fos or related proteins to form AP1 transcription com-
plexes [110–112]. These are functionally activated in
response to Erk or JNK MAPK signaling that is induced
by various stimuli, including growth factors and cyto-
kines, and TGF-β itself, and target an extensive variety
of genes [112–114]. c-Jun expression is increased in fibro-
sis; increased c-Jun expression promotes fibrosis; and tar-
geted inactivation of its gene attenuates fibrosis in mouse
models, thus positioning c-Jun as a driver of fibrosis
[115,116]. TGF-β-activated Smad3/4 complexes cooper-
ate with AP1 complexes to direct TGF-β-induced expres-
sion of various target genes [117,118], including those
encoding CTGF, interleukin-11, c-Jun, collagen Iα2, and
fibronectin [106,112,119,120], all of which greatly con-
tribute to fibrosis. While Smad3, in cooperation with
Smad4, drives most TGF-β-induced gene expression
responses in fibrosis and other physiological contexts,
Smad2 often acts as a modifier of Smad3-mediated
responses with additional and distinct roles [48,121].

The effects of increased TGF-β activation on cell
populations in the fibrotic lesion other than fibroblasts
have been studied less. Vascular endothelial and mural
cells are expected to respond to TGF-βwith gene expres-
sion changes that may resemble those of fibroblasts, thus
also rendering these cells fibrogenic. Furthermore, TGF-
β induces mesenchymal characteristics in both cell types,
raising the possibility that they contribute to the fibroblast
population [90,122]. In fact, mouse model studies
strongly suggest that, in fibrosis, increased TGF-β signal-
ing promotes EndMT to a variable extent, similarly to
EMT, and that EndMT might substantially contribute to
the fibrogenic fibroblast population [40,123,124].
Increased TGF-β signaling in epithelial cells, following
αvβ6-mediated activation of latent TGF-β1, also plays
significant roles in the initiation and progression of fibro-
sis, in part through acquisition of mesenchymal traits
[56,68,78,125]. To what extent and how epithelial and
endothelial cells following partial or complete EMT or
EndMT contribute to fibrosis may depend on the type
and model of fibrosis studied and approaches used to
assess their contributions. However, single-cell analyses
of human fibrotic lesions revealed cells with repressed
epithelial or endothelial characteristics and acquiredmes-
enchymal properties, strongly suggesting contributions
of partial or complete EMT and EndMT to human fibro-
sis [126,127]. Finally, TGF-β signaling promotes angio-
genesis, and increased TGF-β expression and signaling
in the tumor micro-environment promote tumor angio-
genesis in carcinomas [67,128]. Hence, increased TGF-
β activity may contribute to neovascularization in some
fibrotic settings.

Resident immune cells are also expected to respond to
the increased TGF-β activation in fibrotic lesions.
Increased TGF-β activation may be most relevant for
macrophages, which play critical roles in fibrosis, in part
through expression of cytokines that then act on

fibroblasts [22,129]. Macrophages are highly responsive
to locally activated TGF-β in normal physiological set-
tings, as is apparent from their staining for activated
Smad3 [55,130]. TGF-β1 is a potent chemotactic factor
for macrophages, resulting in macrophage recruitment
into the fibrotic lesion [131,132]. Additionally, TGF-β
induces the expression of pro-fibrotic cytokines by mac-
rophages, including TGF-β1 itself [132,133], thus ampli-
fying the TGF-β activities. Furthermore, as in fibroblasts,
TGF-β can stimulate ECM protein expression by macro-
phages [134,135]. These and other activities position
TGF-β1 as a key regulator of macrophage recruitment
and functions in the fibrotic lesions. Less is known about
the extent to which TGF-β activation controls other
immune cells, most notably T-cell populations, in fibrotic
lesions. However, by analogy to the tumor micro-
environment of carcinomas [67], we surmise that TGF-
β affects many of the T-cell subpopulations, resulting in
functional alterations and immunosuppressive activities.

TGF-β signaling is required for fibrosis

The role of TGF-β as a driver of fibrosis has been exten-
sively documented usingmousemodels in which a TGF-
β receptor or a TGF-β receptor-activated Smad was
functionally or genetically inactivated. Pharmacological
kinase inactivation of the type I TGF-β receptor TβRI,
also known as ALK5 or TGFBR1, which initiates
TGF-β-induced Smad2 and Smad3 activation and Erk
MAPK signaling, prevents or strongly attenuates fibrosis
in models of lung, liver, heart, kidney, and intestinal
fibrosis, as well as injury-induced vascular fibrosis and
myelofibrosis [136–140]. Downstream from the type I
TGF-β receptor, Smad3 is essential in fibrosis [81,82],
which is consistent with Smad3’s role as a major media-
tor of TGF-β-induced, direct transcriptional responses
[48,73]. Indeed, genetic inactivation of Smad3 strongly
inhibits fibrotic responses in various models of fibrosis,
highlighting Smad3’s role as a major pro-fibrotic media-
tor in fibroblasts [81,82]. These observations in a large
variety of models highlight the roles of TGF-β-TβRI/
ALK5–Smad3 signaling as a driver of fibrotic responses,
independent of the type and site of fibrosis. In contrast,
and consistent with Smad2’s ability to attenuate TGF-
β-induced Smad3 activities and its distinct activities
[121], conditional Smad2 inactivation was shown to
have distinct, non-fibrogenic activities in models of kid-
ney fibrosis [141] and liver fibrosis [142].
Upon stimulation, the TGF-β receptor complexes acti-

vate MAPK pathways and Akt–mTOR signaling that are
known to cooperate with Smad signaling [74] (Figure 3).
Various studies have addressed the roles of these path-
ways in fibrogenic responses and models of fibrosis.
However, while these studies inform us about contribu-
tions of the individual pathways to fibrosis, they are
not necessarily informative about their roles in direct
responses to TGF-β, since diverse stimuli, most notably
growth factors that activate receptor tyrosine kinases,
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also upregulate these pathways in fibrosis [143–145].
Among the MAPK pathways, the MEK1/2–Erk MAPK
pathway contributes to fibrosis in several mouse models
[146–148], and p38 MAPK also contributes to renal and
cardiac fibroses [149–153].
Consistent with mTOR’s contributions to fibrogenic

activities of fibroblasts [154–157], mTOR inhibition by
rapamycin attenuates fibrosis in mouse models of kidney
and lung fibrosis [158–160]. mTOR acts primarily
through mTORC1 and mTORC2 complexes [161].
Often used to inhibit mTORC1, rapamycin also inhibits
mTORC2, albeit less efficiently [162,163], and may only
affect a subset of mTORC1-mediated responses
[164,165]. Since mTORC1- and mTORC2-specific phar-
macological inhibitors are not available, targeted inacti-
vation of the genes encoding Raptor or Rictor has been
used to dissect the differential contributions of mTORC1
and mTORC2, respectively, to fibrosis. Using this
approach, mTORC1, acting through 4EBP1, was shown
to be required for increased collagen synthesis by fibro-
blasts, albeit in a rapamycin-insensitive way, whereas
mTORC2 was not required [96]. On the other hand,
two lines of research support a role for mTORC2 in
mouse models of kidney fibrosis. Fibroblast-specific
inactivation of Rictor expression prevents kidney fibrosis
[166], andmTORC2 is required inmacrophages for cyto-
kine release by macrophages, and fibroblast activa-
tion [155].
Among the immediate TGF-β target genes that are acti-

vated by Smad3/4 complexes are several with effector roles
in promoting fibrosis, notably those encoding CTGF, IL-11
or c-Jun, that are expressed at high levels in fibrosis models
and human fibrotic lesions [107,108,115,167]. Antibody-
mediated inactivation of CTGF [168] or IL-11 [109] and
targeted inactivation of c-Jun expression [115] are suffi-
cient to attenuate or repress fibrosis in mouse models. Con-
sequently, these mediators of fibrogenesis – two secreted
proteins and a transcription factor – are seen as attractive
targets for anti-fibrosis therapies. As mentioned, all three
genes are transcriptionally activated through TGF-
β-induced cooperation of Smad3/4 complexes with AP1
complexes at regulatory sequences [106,112,119],
highlighting the cooperation of TGF-β/Smad3 with
MAPK–AP1 signaling in fibrogenesis. Notably, attenua-
tion of TGF-β activation and signaling in fibrotic tissues
is expected to repress the expression of these key anti-
fibrotic downstream targets.

Therapeutic approaches toward inhibition of TGF-β
in fibrosis

With increasing appreciation of TGF-β’s roles in fibro-
sis, much interest evolved toward TGF-β inhibition as
a universal therapeutic approach to attenuate, halt or
reverse fibrosis at diverse organ sites. The development
of therapeutic anti-TGF-β approaches has, however,
been mainly driven by approaches to inhibit cancer
progression, recently in immuno-oncology, yet was

tempered and delayed by concerns about potential
adverse effects that were anticipated based on findings
in mouse models [67]. Most anti-TGF-β therapeutic
modalities fall into four groups: (1) small-molecule
inhibitors of the TGF-β receptor kinases, (2) monoclonal
antibodies that prevent TGF-β binding to its receptors,
(3) ligand traps consisting of dimerized ectodomains of
the type II TGF-β receptors (TβRII, TGFBR2) that
sequester TGF-β and prevent its receptor binding, and
(4) small molecules or antibodies that selectively inter-
fere with TGF-β1 activation [67]. While the latter
approaches aim to provide target selectivity, the former
three classes are expected to systemically inhibit TGF-
β, unless coupled to an antibody that directs target
specificity.

Systemic TGF-β inhibition
Exemplified by galunisertib (LY2157299) [169] and vac-
tosertib (EW-7197) [170], small-molecule inhibitors of
TGF-β receptor kinases, primarily TβRI, block Smad2
and Smad3 activation in response to TGF-β. They do
not target TGF-β receptors specifically and are equally
effective against type I receptors for several other TGF-
β-related proteins, such as activin, nodal, and myostatin,
and possibly also other kinases, such as p38 MAPK
[169]. They are simple to deliver orally but have poor
pharmacokinetic and pharmacodynamic properties. In
contrast, neutralizing TGF-β antibodies have exquisite
ligand specificity, although they need to effectively inter-
fere with the tight TGF-β binding affinity (in the 0.01 nM
range) of the cell surface receptor complexes [48].
Among these, fresolimumab (1D11) [171] and
SAR439459 [172] neutralize all three TGF-β homodi-
mers, whereas NIS793 neutralizes TGF-β1 and TGF-β2
but not TGF-β3 [173]. Soluble, high-affinity ligand traps
also prevent TGF-β from binding to its receptors. These
comprise dimers of TβRII ectodomains (Fc-stabilized)
that are designed to sequester TGF-β1 and TGF-β3, but
not TGF-β2, and thus prevent them binding to receptors
[174,175]. Distinct TGF-β traps differ in ligand-binding
specificities or show enhanced ligand-binding efficacy
[176]. Among those, AVID200 has been evaluated in
mouse models and clinically [177] and was used as the
basis for development of a bispecific trap, named
M7824 or Bintrafusp α, that combines TGF-β binding
to the TβRII ectodomains with a human anti-PD-L1
IgG1 toward immuno-oncological treatments [178].

Clinical studies with anti-TGF-β antibodies or TGF-β
signaling inhibitors revealed adverse effects, consistent
with anticipations based on mouse models [67]. A major
fear was that TGF-β inhibition might induce metaplasia
and tumor outgrowth, since TGF-β acts as a tumor sup-
pressor in carcinoma development, and derepressed
immune responses might lead to inflammation and auto-
immune manifestations. Our current knowledge, primar-
ily from clinical trials with galunisertib, fresolimumab,
and the anti-TGF-β trapM7824, indicates that high doses
of these agents infrequently lead to sporadic keratoa-
canthomas, which are low-grade cutaneous squamous
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lesions that can be surgically managed [179,180]. Skin
rashes have also been seen with fresolimumab and
M7824 [179,180]. No dose-limiting immune-related
adverse effects have been reported in clinical trials using
small-molecule TβRI kinase inhibitors or anti-TGF-β
antibodies. In early dose-escalation studies of galuniser-
tib or other TβRI kinase inhibitors, cardiotoxicity was
seen in some patients but was managed by alterations in
treatment regimen [181,182]. Cardiovascular toxicity
resulting in histopathological changes was also seen in
mice and Cynomolgusmonkeys treated with an antibody
that neutralizes all three TGF-βs [183]. In contrast to
treatment with the TβRI kinase inhibitor LY2109761 or
a pan-TGF-β antibody, antibody-mediated repression of
only TGF-β1 did not result in cardiac valvulopathies in
a rat model [184]. Additionally, concerns over adverse
effects on vascular integrity leading to hemorrhagic
lesions need to be considered because TGF-β1 is required
for endothelial integrity through effects on pericytes
[185]. Toxicology studies with a potent, neutralizing
pan-TGF-β antibody in mouse and monkey models
resulted in persistent hemorrhagic bleeding and associ-
ated pathologies [183], whereas clinical trials using galu-
nisertib or M7824 associate TGF-β inhibition with
manageable mucosal bleeding [180,182]. These findings
strongly suggest that systemic inhibition of all three
TGF-βs might confer substantial toxicity that is attenu-
ated with less efficient inhibition or by targeting TGF-
β1 only. Nevertheless, using appropriate dosage and
treatment regimens, small-molecule inhibitors and anti-
TGF-β antibodies have manageable safety profiles, even
though the therapeutic window is narrow [67].

Some anti-TGF-β approaches have been evaluated as
monotherapies in animal models of fibrosis and limited
clinical studies to target fibrosis-associated conditions.
Multiple studies illustrate the abilities of neutralizing
anti-TGF-β antibodies and TGF-β receptor kinase inhib-
itors to prevent fibrosis in preclinical models of lung,
liver, heart, and kidney fibrosis, to the extent that they
are often used as positive controls in the evaluation of
novel approaches to inhibit fibrosis [186] or validation
of novel research models [187,188]. For example, vacto-
sertib prevents or attenuates fibrosis in liver fibrosis
models upon carbon tetrachloride injury or bile duct
ligation, bleomycin-induced lung fibrosis, and renal
fibrosis following unilateral ureteral obstruction [189].
Treatment with vactosertib reduces Smad2 and Smad3
activation and collagen synthesis across all four models
[189]. Additionally, in two models of ulcerative colitis,
vactosertib reduces fibrotic gene expression and colla-
gen accumulation in colon tissue, although this may be
secondary to reduction in mucosal damage [190,191].
Consistent with these results, SB525334, an orally
adsorbed, selective TGF-βRI kinase inhibitor, inhibits
bleomycin-induced lung fibrosis in mice, reducing
Smad2 and Smad3 activation, and collagen and fibro-
nectin expression, and improving lung histology with
reduced collagen accumulation in the lung parenchyma
[192,193]. SB525334 was also effective in blocking
lung fibrosis induced by adenoviral TGF-β1 expression,

both prophylactically and after fibrosis was established
[136]. Additionally, in a rat model of renal fibrosis,
SB525334 reduced pro-fibrotic gene expression and
improved renal function [194]. Among the neutralizing
anti-TGF-β antibodies, a mouse version of fresolimu-
mab has been well studied in preclinical models of fibro-
sis, notably renal fibrosis. This antibody, either as a
single agent or with angiotensin II blockade of hyperten-
sion, significantly reduced fibrosis in the anti-Thy1
model of glomerulonephritis [195], a model of diabetic
nephropathy-associated fibrosis [195], renal interstitial
fibrosis following unilateral ureteral obstruction [196],
and adriamycin-induced nephropathy [197].
Despite their robust efficacy in anti-mouse models,

therapeutic approaches to attenuate fibrosis progression
by systemically blocking TGF-β activity have disap-
pointed in clinical studies. Treatment of patients with
renal fibrosis with the pan-TGF-β neutralizing antibody
fresolimumab or the TGF-β1-specific neutralizing anti-
body LY2382770 led to negative or inconclusive results.
Fresolimumab was studied in focal segmental glomeru-
losclerosis patients, but while there was indication of
efficacy without signs of toxicity, the study was con-
cluded prior to completing enrollment due to expiration
of the drug [198]. LY2382770 was studied in a large trial
of advanced diabetic nephropathy patients, conclusively
demonstrating no benefit of treatment in that cohort. This
study also had significant limitations, potentially result-
ing from inadequate TGF-β inhibition under the
treatment regimen used [199]. Fresolimumab and the
anti-TGF-β trap AVID200 have been studied in small
studies in systemic sclerosis patients. The reported
results from both therapies are encouraging, with both
agents leading to reductions in fibrosis biomarkers and
improvements of skin stiffness [200,201]. Both studies
were exploratory with limited patient populations,
encouraging the initiation of larger clinical trials.

Selective TGF-β inhibition
Some antibodies and small molecules target the context-
dependent TGF-β activation process and thus provide
cell-type or tissue-type selective inhibition of TGF-β sig-
naling. Latent TGF-β1 activation involves RGD
sequence-mediated association of TGF-β1 pro-segments
with selected β integrins in complexes with αv integrins
at the cell surface (Figure 2). αvβ1, αvβ6, and αvβ8
integrins mediate TGF-β1 activation, with αvβ1 and
αvβ6 primarily expressed on fibroblasts and epithelial
cells, respectively [48,49,67–69], and αvβ8 receiving
particular attention in the context of immuno-oncology
[67,69,70]. Targeted interference with these interactions
is expected to prevent TGF-β1 activation in a cell type-
selective manner, without systemic TGF-β inhibition.
However, the development of effective, selective, and
in particular orally available αv integrin inhibitors comes
with challenges [68,202,203].
Antibodies against integrins β1, β6 or β8 were shown

to selectively impair TGF-β1 activation [70,204–207].
Among these, the best studied inhibitor for treatment of
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fibrosis is the anti-αvβ6 antibody 3G9 [208], which led
to the development of a clinical candidate, STX100/
BG0011. Selective inhibition of αvβ6 integrin-mediated
activation of TGF-β1 with this antibody effectively
reduced fibrosis in multiple preclinical models of fibro-
sis, including bleomycin- and radiation-induced lung
fibrosis [208,209], cholestatic liver disease [210,211],
and renal fibrosis [212]. In these models, significant epi-
thelial cell injury and, consequently, upregulation of
αvβ6 expression on epithelial cells accompany the
initiation of fibrosis [213]. However, in models where
epithelial cell injury is not prominent, such as CCl4-
induced liver injury, αvβ6 appears to have a more
limited role [213]. An antibody against αvβ8 integrin
has shown anti-fibrotic activity against airway remodel-
ing in a mouse model of chronic obstructive pulmonary
disease [214]. Another antibody, SRK-181, developed
to bind the TGF-β1 pro-segment, prevents dissociation
of mature TGF-β1 from its pro-segment, consequently
keeping TGF-β1 latent without affecting TGF-β2 or
TGF-β3 activation [184]. In contrast to interference with
integrin-mediated TGF-β activation, this antibody is
expected to act systemically.
Among the small-molecule inhibitors of integrin-

mediated TGF-β1 activation, inhibitors of αvβ1 were
shown to effectively reduce liver, lung, and renal fibrosis
in preclinical models [215]. Other studies demonstrate
the ability of GSK3008348, an inhaled αvβ6 inhibitor
of TGF-β1 activation, to inhibit TGF-β signaling and
reduce the expression of fibrosis biomarkers and colla-
gen expression in mouse models of fibrosis [186]. Addi-
tionally, PLN-74809, an oral small-molecule inhibitor of
αvβ6- and αvβ1-mediated TGF-β1 activation, was
shown to inhibit bleomycin-induced lung fibrosis in
mice [216]. A conceptually different approach allows
for fibroblast-specific inhibition of TGF-β signaling that
leads to attenuation of lung and tumor fibrosis. Trihy-
droxyphenolic compounds, such as ellagic acid and cor-
ilagin, selectively inhibit the TβRI kinase, dependent on
auto-oxidation and irreversible inhibition of the enzyme
lysyl oxidase-like 2 (LOXL2). LOXL2 is expressed in
fibroblasts and upregulated during fibrosis, suggesting
that limiting TGF-β inhibition to these cells will avoid
the safety issues associated with systemic inhibition.
These compounds are able to repress collagen synthesis
and fibrosis in a mouse model of bleomycin-induced
lung fibrosis [217].
Several clinical studies have been evaluating these

selective inhibitors of integrin-mediated TGF-β1 activa-
tion. The anti-integrin β6 antibody STX100/BG0011
that interferes with αvβ6-mediated TGF-β1 activation
was studied in IPF patients. Although promising results
in early studies demonstrated reduced TGF-β signaling
in the lung [218], a subsequent phase IIb study was ter-
minated early due to safety concerns [219] that may
result from antibody-driven inflammation reportedly
seen in mouse and primate studies [220]. Clinical trials
of small-molecule inhibitors of integrin-mediated TGF-
β1 activation have also been reported. IDL-2965, a
multi-integrin inhibitor of αvβ1, αvβ3, and αvβ6 was

studied in IPF patients [221], but this trial was halted
prematurely with no additional data currently available.
GSK3008348 was shown to reduce fibrosis marker
expression and collagen deposition in precision-cut
human lung tissue slices, and positron emission tomog-
raphy (PET) imaging revealed target engagement in the
lungs of IPF patients following a single dose of
the inhaled drug [222]. PLN-74809 has been shown to
reduce TGF-β signaling in alveolar macrophages in
healthy volunteers [223] and inhibit fibrosis pathways
in precision-cut human lung tissue slices [224]. PLN-
74809 is currently in phase 2 trials in IPF patients
[216] and primary sclerosing cholangitis patients [225],
as well as in a PET tracer target engagement study in
IPF patients [226]. Finally, the trihydrophenolic com-
pound epigallocatechin gallate (EGCG), which acts as
a dual inhibitor of LOXL2 and the TβRI kinase, was
shown to inhibit TGF-β-induced Smad activation and
pro-fibrotic gene expression in lung biopsies from IPF
patients, demonstrating a strong correlation between
Smad activation and soluble collagen in lung tissue
[227]. Clearly, we are only at the very beginning of the
development of selective agents that interfere with
integrin-mediated TGF-β activation. Ongoing and future
preclinical and clinical studies will reveal the feasibility
of selective TGF-β inhibition strategies to attenuate pro-
gression of the different types of fibrosis.

In conclusion, since the early discovery of TGF-β’s
ability to induce fibrotic scar formation [76], substantial
evidence has causally linked increased TGF-β activity to
initiation and progression of fibrosis. Enhanced TGF-β
signaling is now increasingly seen as a universal driver
of fibrotic processes in diverse pathological contexts,
tissues, and organs. Consequently, interference with
TGF-β activation and signaling is now pursued as a ther-
apeutic strategy to attenuate and reverse fibrosis and
associated pathological consequences. With multiple
normal physiological roles of TGF-β, selective
approaches are being developed to pre-empt unwanted
adverse effects of TGF-β-inhibition while achieving
therapeutic efficacy in the fibrotic lesions.
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