PHARMACOLOGICAL INHIBITORS OF INTEGRIN $\alpha_{v}\beta_{6}$ THAT DIFFERENTIALLY MODULATE PROTEIN CONFORMATION ARE SIMILARLY EFFECTIVE AT INHIBITING TGF- β SIGNALING IN THE FIBROTIC LUNG

Budi EH,¹ Kotak P,¹ Ho S,¹ Rao V,¹ Chen C,^{1*} Wolters P,² Schaub J,¹ Turner S,¹ Decaris M¹ ¹Pliant Therapeutics, Inc., South San Francisco, CA, USA; ²Department of Medicine, University of California, San Francisco, CA, USA *Former employee; did not contribute to poster development Research supported by Pliant Therapeutics, Inc.

in patients with idiopathic pulmonary fibrosis (IPF)

- We analyzed the impact and differential effects of $\alpha_{v}\beta_{6}$ antagonists that modulate

- Immunofluorescent staining of integrin $\alpha_{v}\beta_{6}$ was performed on human lung epithelial
- Three small molecule inhibitors (PLN-A, PLN-B, and PLN-C; half-maximal inhibitory in conformations ranging from extended-open to bent-closed were evaluated by RNA sequencing for differential effects on gene expression in primary lung epithelial cells cultured on decellularized fibrotic lung extracellular matrix
- Pathway enrichment analyses were performed using Enrichr^{3,4}
- Follow-up NanoString evaluation of small molecule inhibitors that induce extended-open vs. bent-closed $\alpha_{v}\beta_{6}$ conformation was performed using precision-cut lung slices prepared from explanted lung tissue from patients with IPF

Authors' relevant interests: EHB, PK, SH, VR, JS, ST, and MD are all employed by Pliant Therapeutics, Inc., and has stock options. PW has nothing to disclose

Figure 4. Immunofluorescence staining of $\alpha_{v}\beta_{6}$ in human lung epithelial cells treated with $\alpha_{v}\beta_{6}$ antibody inhibitors

 Consistent with small molecule inhibitors, treatment with an inhibitory antibody that stabilized an extended-open conformation (8G6) induced internalization of $\alpha_{v}\beta_{6}$, while treatment with an inhibitory antibody that stabilized a bent-closed conformation (3G9) did not

human lung epithelial cells cultured on extracellular matrix isolated from fibrotic lungs

- $\alpha_{\nu}\beta_{6}$ inhibitors that stabilized different $\alpha_{\nu}\beta_{6}$ conformations were found to have similar
- Similar patterns of fibrosis-related gene expression were observed in lung epithelial cells

	Extended-open PLN-A	Intermediate PLN-C	Bent-closed PLN-B	Extended-open 8G6 Ab	Bent-closed 3G9 Ab
Gene	Lung fibrotic ECM			Lung fibrotic ECM	
SRGAP3	1.62	1.46	1.44	0.83	0.86
PEG10	1.26	1.42	1.12	0.73	0.60
SDPR	0.65	0.60	0.49	0.49	0.59
ANKRD1	-2.73	-2.14	-1.56	-1.76	-1.25
MSC	-2.64	-2.46	-1.63	-1.87	-1.47
ADAMTS15	-2.63	-2.11	-2.04	-1.37	-1.16
NEURL1B	-2.20	-1.85	-1.64	-1.28	-1.24
C4orf26	-2.21	-1.93	-1.54	-1.80	-1.37
NKILA	-2.58	-2.11	-1.79	-1.37	-1.27
PMEPA1	-2.12	-1.75	-1.27	-1.03	-0.82
SERPINE1	-1.88	-1.75	-1.42	-1.35	-1.19
IVNS1ABP	-2.05	-1.95	-1.53	-1.12	-0.89
KANK4	-1.87	-1.56	-1.34	-1.17	-1.11
AKAP12	-1.63	-1.70	-1.38	-1.03	-0.88
PDGFB	-1.49	-1.68	-1.34	-1.27	-1.11
NEDD9	-1.47	-1.21	-1.06	-0.90	-0.79
ATF3	-1.93	-1.62	-1.67	-1.29	-1.21
CTGF	-1.38	-1.07	-0.66	-0.65	-0.59
BPGM	-1.48	-1.34	-1.16	-0.75	-0.60
SEMA7A	-1.33	-1.31	-1.06	-0.83	-0.76
SMAD7	-1.29	-1.25	-0.86	-0.87	-0.68
PODXL	-0.60	-1.02	-0.88	-1.01	-0.97
TUBB3	-1.12	-1.13	-0.90	-0.81	-0.70
WNT5B	-1.42	-1.39	-1.04	-0.80	-0.75
FZD10	-0.93	-0.91	-0.81	-0.61	-0.64
GADD45B	-1.03	-0.87	-0.92	-0.71	-0.66

Log₂ fold change vs. DMSO

Term	Adjusted p value
TGF-β signaling pathway	<0.001
TGF-β regulation of extracellular matrix	0.003
RAGE pathway	0.003
SMAD2/3 nuclear pathway	0.004
Hypertrophy pathway	0.006
Hippo signaling pathway	0.017
Basal cell carcinoma	0.029
Carcinoma	0.029
Oncostatin M	0.053

Poster no. 816

Figure 6. Fibrosis-related gene expression in lung epithelial cells treated with small molecule and antibody inhibitors of $\alpha_{v}\beta_{e}$

<u>Pharmacological $\alpha_{\mu}\beta_{6}$ inhibitors that differentially modulate integrin conformation</u> were equally effective at blocking TGF-β gene expression in slices prepared from **IPF explants**

Figure 7. Preparation of precision-cut lung slices and effect of small molecule and antibody inhibitors of $\alpha_v \beta_6$ on fibrosis-related gene expression in precision-cut lung slices by NanoString

• Similar to data obtained from primary cells, small molecule and antibody inhibitors of $\alpha_{v}\beta_{6}$ inducing different integrin conformations were each effective at reducing fibrosis-related genes in precision-cut lung slices prepared from IPF explants

CONCLUSIONS

- $\alpha_{v}\beta_{6}$ small molecule inhibitors that differentially modulate integrin $\alpha_{v}\beta_{6}$ conformation are equally effective at blocking $\alpha_v \beta_6$ -mediated regulation of TGF- β signaling in bronchial cell- and fibrotic lung tissue-based assays, with no $\alpha_{v}\beta_{6}$ conformation-related changes in gene expression observed
- This study supports the ongoing evaluation of $\alpha_v \beta_6$ inhibitors for the treatment of IPF

ACKNOWLEDGMENTS

Editorial assistance was provided by Alpharmaxim Healthcare Communications and funded by Pliant Therapeutics, Inc.

REFERENCES

1. Van Agthoven JF, et al. Nat Struct Mol Biol 2014;21(4):383-388 2. Huang J, et al. J Hematol Oncol Pharm 2019;12(1):26 **3.** Chen EY, et al. *BMC Bioinformatics* 2013;14:128 **4.** Kuleshov MV, et al. *Nucleic Acids Res* 2016;44(W1):W90–W97

Contact information: ebudi@pliantrx.com