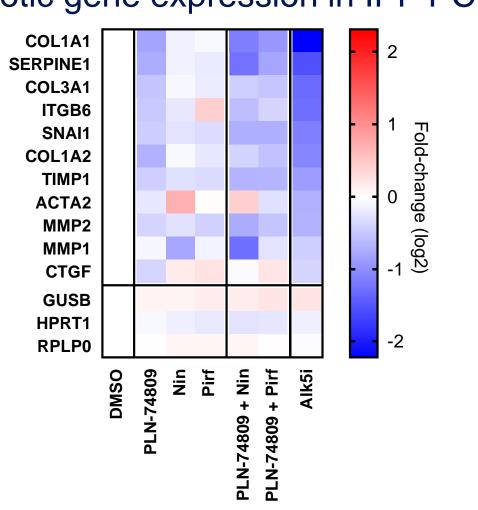
COMBINING DUAL $\alpha_V \beta_6 / \alpha_V \beta_1$ INTEGRIN INHIBITOR, BEXOTEGRAST (PLN-74809), WITH STANDARD-OF-CARE THERAPIES HAS A SYNERGISTIC EFFECT ON REDUCING FIBROGENIC GENE EXPRESSION IN FIBROTIC HUMAN LUNG SLICES

Johanna Schaub¹, Richard Ahn¹, Steve Ho¹, Vikram Rao¹, Paul Wolters², Scott Turner¹, <u>Martin Decaris¹</u> ¹Pliant Therapeutics, Inc., South San Francisco, CA, USA; ²University of California San Francisco, San Francisco, CA, USA

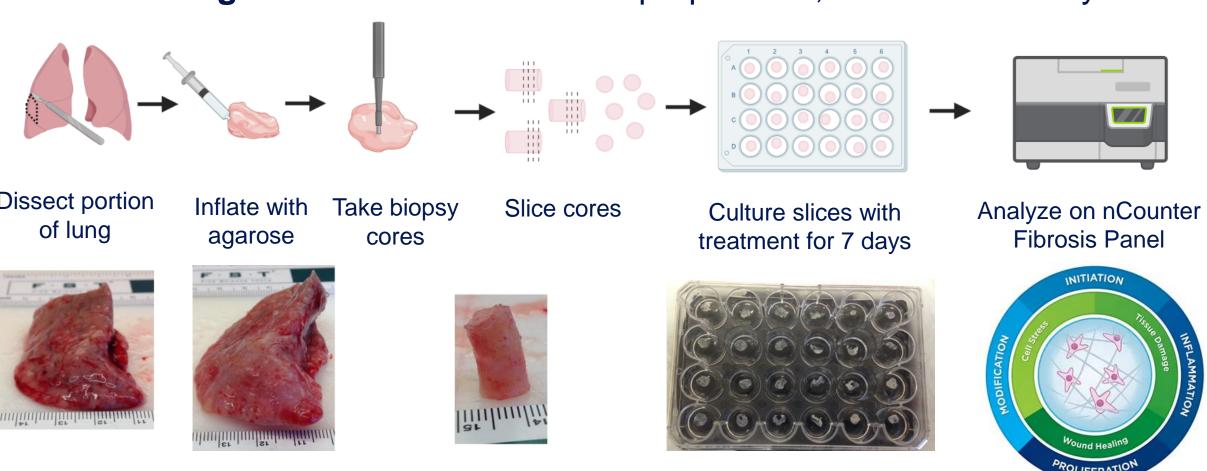
BACKGROUND


Idiopathic pulmonary fibrosis (IPF) is a rare fibrotic disease that progressively destroys lung structure and function and has a poor prognosis. The current standard-of-care drugs for IPF, nintedanib (a known inhibitor of FGFR, PDGFR, and VEGFR) and pirfenidone (mechanism not well understood), have modest effects on pulmonary function and life expectancy, but do not halt disease progression. Novel antifibrotic therapies with complementary mechanisms of action to nintedanib and pirfenidone are therefore required to further improve patient outcomes in IPF.

Bexotegrast (previously referred to as PLN-74809) is a dual-selective inhibitor of integrins $\alpha_{v}\beta_{6}$ and $\alpha_{v}\beta_{1}$ currently in development for the treatment of IPF. By blocking the interaction of latent-TGF- β with $\alpha_{\nu}\beta_{6}$ (on lung epithelial cells) and $\alpha_{\nu}\beta_{1}$ (on lung fibroblasts), bexotegrast reduces TGF-β signaling and fibrogenesis locally in the fibrotic lung. Using precision-cut lung slices (PCLS) generated from IPF lung explants, we investigated the individual and combined effects of bexotegrast and nintedanib or pirfenidone on the expression of genes related to the pathogenesis of IPF.

Previous quantitation of total mRNA extracted from fibrotic PCLS confirmed the anti-fibrotic effects of bexotegrast in the presence or absence of nintedanib and pirfenidone in 7 independent IPF tissues using a small focused gene panel (Fig.1)¹. In this study, a subset of these PCLS samples were used to profile an expanded gene expression panel including markers of tissue damage, inflammation, fibroblast activation, and scar deposition.

Figure 1 data represent mean (\pm SD) of 5–7 independent IPF tissues with \geq 3 slices independently analyzed per patient tissue. Treatment effects were normalized to DMSO control for each tissue. Culture and treatment were for 7 days. PLN-74809 = 200 nM; Nin = 75 nM; Pirf = 50 μ M; ALK5i (R-268712) = 1 μ M.


Figure 1. Bexotegrast reduces fibrotic gene expression in IPF PCLS

METHODS

Precision-cut lung slices

- Lung tissue was acquired from 4 patients with IPF undergoing lung transplantation
- PCLS generated from explants were cultured with inhibitors at clinically relevant concentrations: 200 nM bexotegrast, 75 nM nintedanib², 50 µM pirfenidone²

Figure 2. Flowchart of PCLS preparation, culture and analysis

- RNA containing lysate from n = 6 slices per treatment per lung were pooled for gene expression analysis versus vehicle (DMSO) using the 770-gene nCounter Fibrosis Panel (NanoString)
- Technical quality control and normalization of raw NanoString mRNA count data were performed using an R framework
- Differentially expressed genes were identified following multi-comparison correction (FDR<0.05)

RESULTS

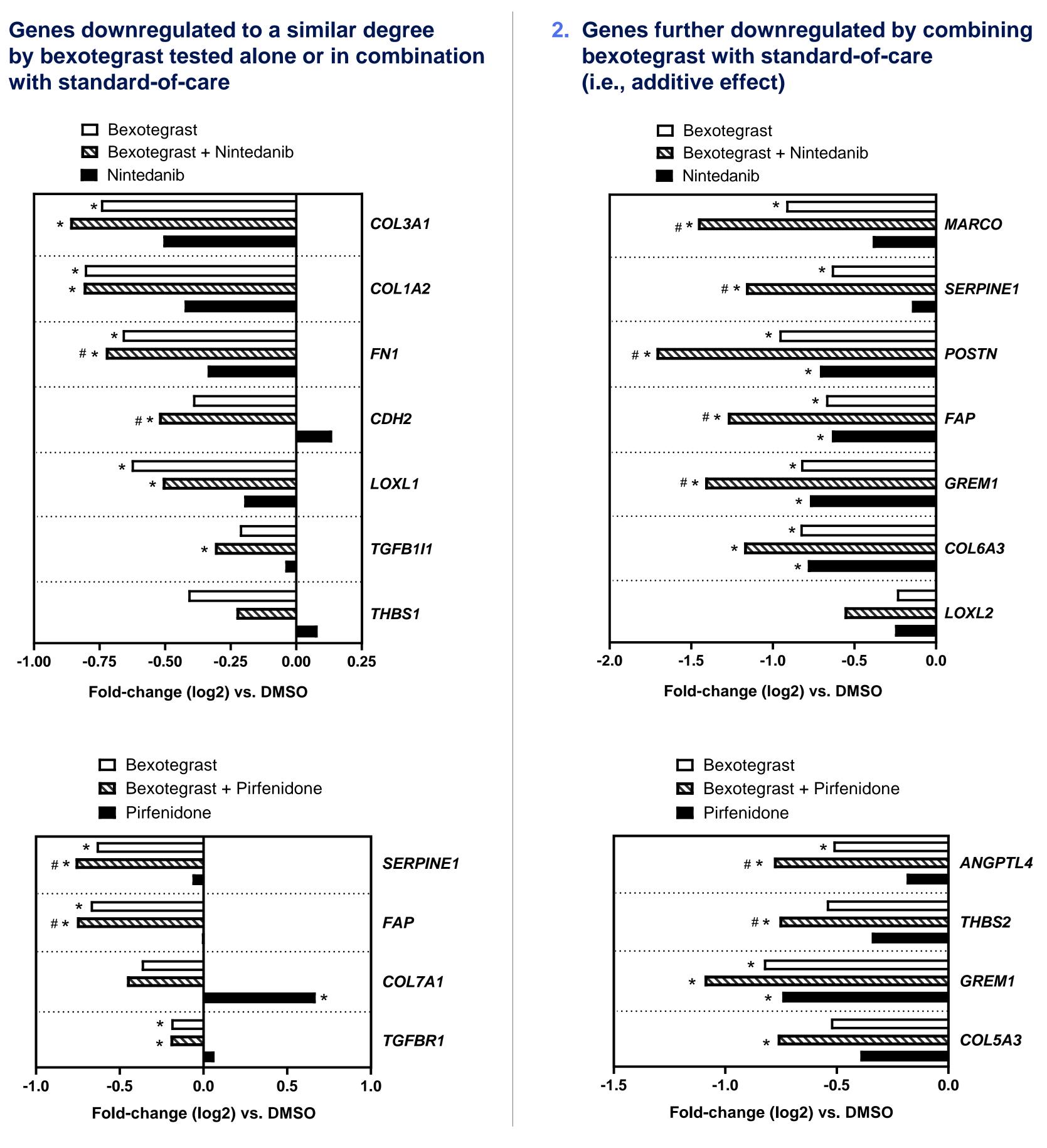
Genes and Pathways Most Down-Regulated by Individual Treatments

Bexotegrast (PLN-74809)			Nintedanib			Pirfenidone		
Gene	log2FC	p-value	Gene	log2FC	p-value	Gene	log2FC	p-value
COL10A1	-2.78	<0.001	FLT1	-3.37	<0.001	FGF19	-1.14	0.005
POSTN	-0.96	0.016	DLL4	-2.79	<0.001	KNG1	-1.10	0.018
COL5A1	-0.93	0.007	CDH5	-2.33	<0.001	CDH5	-1.06	0.012
MARCO	-0.92	0.013	COX4I2	-2.07	<0.001	MMRN1	-0.98	0.021
MMP8	-0.88	0.016	PECAM1	-1.97	<0.001	PECAM1	-0.94	0.026
COL6A3	-0.83	0.034	CETP	-1.73	0.003	CXCR4	-0.89	0.021
GREM1	-0.83	0.016	CXCR4	-1.73	<0.001	CD34	-0.84	0.012
PECAM1	-0.83	0.046	CXCL10	-1.71	0.031	RELN	-0.83	0.037
COL1A2	-0.81	0.003	NOTCH4	-1.61	<0.001	TEK	-0.81	0.012
CXCR4	-0.78	0.035	CD34	-1.52	<0.001	COL14A1	-0.78	0.012
COL3A1	-0.74	0.037	FLT4	-1.48	0.003	PDGFRB	-0.75	0.004
LOX	-0.72	0.030	MMP12	-1.41	0.026	COX4l2	-0.75	0.037
MMP11	-0.67	0.016	NOS3	-1.36	0.002	GREM1	-0.74	0.032
FAP	-0.67	0.005	ACVRL1	-1.33	<0.001	HAVCR1	-0.73	0.019
PDGFRB	-0.67	0.004	TEK	-1.21	<0.001	ACVRL1	-0.73	0.021
FN1	-0.66	0.004	TPSAB1/B2	-1.19	<0.001	NOTCH4	-0.72	0.048
SERPINE1	-0.64	0.004	COL10A1	-1.17	0.017	COL4A1	-0.70	0.047
PLPP4	-0.64	0.030	MMP9	-1.14	0.016	GAS1	-0.64	0.009
LOXL1	-0.63	0.000	MMP8	-1.05	0.002	CXCL12	-0.59	0.035
TIMP1	-0.61	0.011	MMP11	-1.00	< 0.001	IFNG	-0.59	0.044

log2FC (log2 fold change) relative to DMSO; p-values adjusted for multiple comparisons

- Genes most down-regulated by bexotegrast were related to fibrogenesis (e.g. COL3A1, FAP, FN, and *TIMP1*), as well as *SERPINE1*, a marker of TGF- β signaling.
- Genes most down-regulated by nintedanib and pirfenidone were related to vasculature development, including CDH5, FLT1, TEK, and CD34.

Table 2. Top Gene Ontology Biological Processes (Down)


Bexotegrast (PLN-74809)	Combined Score	Pirfenidone	Combined Score		
extracellular structure organization (GO:0043062)	10837	glomerulus vasculature development			
extracellular matrix organization (GO:0030198)	10586	(GO:0072012)	9059		
external encapsulating structure organization (GO:0045229)	8683	fusion of virus membrane with host plasma membrane (GO:0019064)	5084		
peptidyl-lysine oxidation (GO:0018057)	4898	membrane fusion involved in viral entry into			
collagen fibril organization (GO:0030199)	4453	host cell (GO:0039663)	5084		
endodermal cell differentiation (GO:0035987)	2912	retina vasculature development in camera-type			
endoderm formation (GO:0001706)	2459	eye (GO:0061298)	3792		
positive regulation of fibroblast migration (GO:0010763)	2213	chemokine (C-X-C motif) ligand 12 signaling			
wound healing, spreading of epidermal cells		pathway (GO:0038146)	3792		
(GO:0035313)	2213	vasculature development (GO:0001944)	3154		
CD40 signaling pathway (GO:0023035)	1848	wound healing, spreading of epidermal cells (GO:0035313)	1706		
	Combined	endothelial cell proliferation (GO:0001935)	1390		
Nintedanib	Score	endothelium development (GO:0003158)	1214		
lomerulus vasculature development (GO:0072012)	4580	negative regulation of hemostasis			
cellular response to UV-A (GO:0071492)	3216	(GO:1900047)	929		
asculature development (GO:0001944)	2781	All gappa down regulated with an adjusted pivolus, a O	ware entered in		
ellular component disassembly (GO:0022411)	2676	All genes down-regulated with an adjusted p-value <0.05 were entere Enrichr ³ . GO Biological Processes with adjusted p-value <0.05 were s			
extracellular matrix disassembly (GO:0022617)	2676	by combined score (Fisher exact test corrected by expected rank test			
vound healing, spreading of epidermal cells	2550				
extracellular matrix organization (GO:0030198)	2256				
oranching involved in blood vessel morphogenesis GO:0001569)	2107				
esponse to UV-A (GO:0070141)	2107				
extracellular structure organization (GO:0043062)	2079				

- Bexotegrast primarily reduced gene expression pathways associated with extracellular matrix
- Pirfenidone primarily reduced gene expression pathways associated with vasculature
- Nintedanib reduced gene expression pathways associated with vasculature and extracellular matrix

Table 1. Top 20 Down-regulated Genes for Individual Treatments

Combining Bexotegrast (PLN-74809) with Standard-of-Care Therapies Identified:

with standard-of-care

CONCLUSIONS

- standalone and combinatorial treatment effects

* = p-value <0.05 vs vehicle (DMSO)

= p-value <0.05 vs standard-of-care alone (adjusted for multiple comparison of genes down-regulated by bexotegrast + standard-of-care vs vehicle)

Differential gene expression analysis of fibrotic human lung slices treated with bexotegrast (PLN-74809) and/or previously approved therapies nintedanib/pirfenidone show

These results suggest the mechanism of action of bexotegrast (currently being evaluated in Phase 2 clinical trials for patients with IPF) may be independent of and complementary to that of currently approved therapies